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Gluing bifurcations in optothermal nonlinear devices

R. Herrero, J. Farjas,* R. Pons,† F. Pi, and G. Orriols
Departament de Fı´sica, Universitat Auto`noma de Barcelona, 08193 Bellaterra, Spain

~Received 3 November 1997!

The gluing process through which two limit cycles become a two-lobed limit cycle by involving an inter-
mediate saddle point has been investigated in the reflection of an optothermal nonlinear device that behaves as
a three-dimensional dynamical system. Sequences of both periodic and aperiodic oscillations of complex
hybrid structures appear during the process. The observed phenomena have been interpreted as arising from a
set of homoclinic bifurcations organized around some codimension-two global bifurcations in which the saddle
point experiences homoclinicity at both sides simultaneously. Experimental results are compared with numeri-
cal simulations.@S1063-651X~98!12305-X#

PACS number~s!: 05.45.1b, 42.65.Pc
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I. INTRODUCTION

Local and global bifurcations are powerful tools for u
derstanding the appearance of complex dynamics in non
ear systems. Multiple bifurcation points appearing in the
rameter space are particularly significant because they a
organizing centers of a variety of qualitatively different d
namics. Concerning local bifurcations, accurate analysis
the bifurcation set may be obtained through the normal fo
derived by applying the center manifold theorem near
degenerate point. This way is really powerful because it e
dences the intrinsic association of a homoclinic connec
with certain degenerate local bifurcations and shows how
corresponding global bifurcation curve emerges from
codimension-two point@1,2#.

Homoclinic orbits are trajectories biasymptotic to a sad
limit set both forward and backward in time, and their cruc
role in the mechanisms originating chaos in dynamical s
tems is now widely recognized@1,3–5#. Homoclinicity is
reached when the unstable and stable manifolds of the sa
approach to cross one through the other by varying so
parameter and a global bifurcation affecting both sides of
saddle separatrix then occurs. During the process a num
of periodic orbits may be generated~destroyed! and, accord-
ing to the actual saddle configuration, complex dynam
may appear@6#. The homoclinic orbit characterizes a recu
rent mechanism for global folding of phase space, while
saddle set provides stretching, folding, and contraction of
flow at a local level.

Homoclinic bifurcations of codimension higher than o
are also possible. A variety of cases arise from the violat
of some nondegeneracy condition affecting either the sa
eigenvalues or the twistedness of manifolds around the
moclinic orbit @7#. Typically a number of additional bifurca
tions of both local and global nature emerge from the deg
erate point of the homoclinic bifurcation curve. Mo
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complex situations may occur when two different homoclin
bifurcations of the same saddle invariant set cross one
other@8–13#. These are the so-called gluing bifurcations a
the present work reports numerical and experimental res
dealing with one of such bifurcation.

Gluing together two attractors is a consequence of a k
of global bifurcation during which two attractors living at th
opposite sides of a saddle separatrix are destroyed and a
attractor is created occupying the loci in phase space of
previous ones. In the gluing process both branches of
saddle unstable manifold approach the separatrix and a
ety of successive homoclinic connections occur throu
which the original attractors disappear and new periodic
bits of hybrid structure are created. In the parameter sp
the gluing phenomena appear organized around the p
where both branches of the saddle unstable manifold exp
ence homoclinicity simultaneously. In the absence of sy
metry, such a point describes a codimension-two global
furcation.

Examples of transitions to chaos through gluing proces
have been found in models developed in the context of
Rayleigh-Bénard convection@14#, reaction-diffusion systems
@15#, parametrically excited surface waves@16#, and magne-
toconvection@17#. To our knowledge, however, experiment
observations of gluing bifurcation phenomena have been
ported in the literature for two-dimensional dynamical sy
tems only @18#. In two dimensions the gluing process
simple. Only the two original limit cycles and the resultin
two-lobed cycle may be involved and the possible sad
connections reduce to the four combinations between
pairs of one-dimensional branches of the stable and unst
manifolds. In three-dimensional phase spaces, however
possibility of different homoclinic connections increases
definitely and a large variety of hybrid periodic orbits ma
be created and complex dynamics may occur@10,11#. This
paper describes a gluing process observed in the respon
a three-dimensional dynamical system and which co
sponds to the simple case of a saddle point with real eig
values.

This work has been done with a nonlinear optotherm
device that involves a periodic nonlinearity and that, for th
reason, provides an optimum situation for the achievemen
gluing phenomena. Such a periodicity originates repetition
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57 5367GLUING BIFURCATIONS IN OPTOTHERMAL . . .
similar flow structures in an extended region of phase sp
and, in particular, it is responsible for~i! a multiple steady
state solution consisting of successive saddle-node pair
fixed points, and~ii ! the occurrence of the same Hopf bifu
cations on either the several nodes or the several saddle
the similar evolution of the corresponding limit cycles.
this way, phase portraits typically contain several attract
that, originated from the respective node points, appear s
rated by the stable manifolds of the intermediate saddle s
In their evolution with the input light power, the attractors
both sides of a given saddle set may approach the sa
separatrix and may be then glued together. Another sig
cant property of the nonlinear system is that its effect
dynamical dimension may be chosen freely by simply mo
fying the device structure and in this way allowed us to stu
gluing phenomena in phase spaces of different dimensi
On the other hand, we dispose of a mathematical model
behaves mimetically to the experimental device and the
merical analysis is then really useful for the understanding
experimental results.

II. NONLINEAR DEVICE

The nonlinear system is based on the so-called optot
mal bistability with localized absorption~BOITAL ! and it
has been described in detail elsewhere from both the exp
mental@19,20# and mathematical@21,22# points of view. We
here remark on the basic mechanisms underlying the sys
dynamics and briefly describe essential details of both
experimental device and the model used for numerical si
lations.

The BOITAL device is an interferometric cavity with
partially absorbing input mirror and a transparent multilay
spacer of alternatively opposite thermo-optic materials. I
illuminated by a laser beam and the time evolution of
reflected light power is the observed signal. Concretely
the experimental device used in this work the cavity w
spaced with a$glass–silicone@23#–glass% trilayer of thick-
nesses 140mm, 70 mm, and 1 mm, respectively. Device
with silicone layers of different thicknesses were also e
ployed in order to move within the parameter space. Ther
expansion works in the case of glass as a positive ph
shifting effect (1025 K21) while the silicon produces nega
tive shifting effects essentially due to refractive ind
changes (24.731024 K21). The cavity mirrors were a
nickel-chrome film of 6 nm thickness coated on the fi
layer of glass and a TiO2-SiO2 multilayer stack coated on th
rear glass layer. The dielectric mirror reflection was hi
~0.98 for the operating wavelength! while the metallic mirror
had external and internal reflections of 0.17 and 0.23, res
tively, and transmission of 0.46. The device was irradia
for the metal mirror side with a continuous-wave laser be
of 514.5 nm wavelength focused to a 0.3 mm diam spot,
reflected light was detected by means of a photodiode
the signal was digitized and stored in a computer. The in
dent light power is used as control parameter.

Time dynamics in BOITAL devices is exclusively base
on the heat propagation from the absorbing mirror throu
the cavity spacer, while the light provides an instantane
nonlinear feedback to the heat source. The light tests
spacer temperature by means of its own phase shift
ce
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transfers such information to the localized heat source
means of interference effects. Nonlinearity is due to the c
ity response as a function of the round-trip phase shift, i
the interferometric Airy function. Competition and time d
lay between the optothermal contributions of the various l
ers to the light phase shift produce instabilities and con
quent dynamical phenomena.

Under some simplifying assumptions, the BOITAL cavi
with a multilayer spacer may be described by the homo
neous heat equations subject to a nonlocal and nonlin
boundary condition@21#. The linear stability analysis show
that the partial differential equation has effective dynami
dimension equal to the number of spacing layers and th
may be reduced to the following low-order model@22#

dc j

dt
52(

i 51

N

bji @c i2aiA~c!cE#, j 51,2,...,N, ~1a!

with

c5c01(
1

N

c j , ~1b!

wherec describes the round-trip phase shift of the cavity,c0

is the phase shift in the absence of laser heating,c j denotes
the variation due to temperature changes of the phase
associated with thej th layer,N is the number of layers, and
cE represents the incident light intensity normalized in su
a way that(ai51. Expressions for the coefficientsbji andai
as a function of the physical parameters are given in@22#.
A(c) describes the input mirror absorption by including i
terference effects and its expression as a function of the
ror parameters is given in@21#. A(c) is a periodic function
with successive maxima and minima and it constitutes
nonlinearity of the system. A canonical form of Eqs.~1!
based on the companion form matrix has been also der
@22#. The response of the system is given by the interfero
eter reflectionR(c) @21#.

The partial differential equations and the reduced mo
have identical steady state solution with nearly the same
ear stability behavior and exhibit very similar dynamics,
least within parameter ranges corresponding to physical
vices @22#. Numerical simulations presented in this wo
have been done with the reduced model of Eqs.~1!. On the
other hand, a variety of experimental results in good agr
ment with numerical simulations have been already repo
for BOITAL devices with one-@24#, two- @18#, and three-
@19,20# spacing layers.

Let us briefly give a generic overview of theN-layer
BOITAL dynamics in the (c1 ,...,cN) phase space, wher
the c5const hyperplanes underlie a certain repetition
flow structures as a consequence of theA(c) periodicity.
The steady state solution consists of a number of saddle-n
pairs, Sm and Nm11 , m51,2,..., added to the initial nod
point, N1 , through successive saddle-node bifurcations
curring by increasing the input powercE . The fixed points
appear aligned in a given direction determined by the ca
spacer properties, but the number of points and theirc values
depend on the cavity mirrors and thecE value only. The
phase portrait evolution as a function of the control para
eter cE is typically as follows: a limit cycle born from the
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5368 57HERRERO, FARJAS, PONS, PI, AND ORRIOLS
Nm point is growing under the presence of a neighbor
saddle set and eventually bifurcates towards more or
complex structures according to the saddle configurat
The coexistence of several limit cycles, originated from d
ferent node points, may lead to complex structures base
multiple-lobed orbits arising from gluing processes.

For N52, the dynamics remains in a plane and the r
evant features reduce to a variety of homoclinic bifurcatio
occurring when the growing limit cycles make tangency
the neighboring saddle points and either disappear or bec
glued to other cycles@18#. Figure 1 points out how high the
gluing capability of BOITAL systems in the two
dimensional case may be. The time evolution of Fig. 1~a!
was experimentally obtained from a$glass-optical gel@25#%
bilayer with thicknesses of 400 and 200mm, respectively.
The evolution corresponds to a four-lobed limit cycle arisi
from successive gluing of four limit cycles. The numeric
results shown in Fig. 1~b! illustrate the same type of attracto
in both the time domain and the (c1 ,c2) phase space. Th
time evolutions describe both the interferometric phasec
and the normalized reflected powercR . Thec(t) signal pro-
vides the simplest picture of the evolution while the supp
mentary foldings on thecR signal arise from interferenc
effects and have no dynamical significance. The phase
trait shows how the limit cycle rounds around seven fix
points, of which three are saddles.

For N53 the dynamics appear enriched by two things
possible in bidimensional phase spaces. First, the neigh
ing saddle set may be now either a saddle point with a b
mensional stable manifold or a saddle limit cycle genera
by a Hopf bifurcation of that point. And second, the growi
limit cycle may bend to reinject towards the inner point fro
which it was originated and which has become a saddle
cus with outward spiraling and a one-dimensional ins
Thus, underlying the dynamics are homoclinic connectio
associated with saddle limit sets arising from theNm andSm
points and having one- and two-dimensional stable ma

FIG. 1. Four-lobed limit cycle observed in the reflection of
BOITAL bilayer system. Experimental~a! and numerical~b! re-
sults.
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folds, respectively. Under clear dominance of the first ki
of homoclinicity the system evolution describes Ro¨ssler-type
folded bands@19#. In the second case the system evoluti
describes Shil’nikov-type attractors if theSm saddle is either
a focus or a limit cycle@20#. In this work we deal with
homoclinic phenomena associated with aSm saddle point
having purely real eigenvalues, i.e., a tridimensional sad
with a positive eigenvalue and two negative ones.

III. MAIN FEATURES OF GLUING BIFURCATION
DIAGRAMS

In this section the notation is introduced and some gen
features of the gluing bifurcation diagrams are briefly d
scribed in order to facilitate the connection between our
sults and the theoretical analysis previously reported in
literature@8–13#.

In symmetric systems where the homoclinic orbits at b
saddle sides are necessarily simultaneous, the gluing bifu
tion is achieved by varying only one parameter but in t
absence of proper symmetry, as is the case in BOITAL s
tems, the full analysis requires good control of two para
eters and the simultaneous occurrence of both homoc
connections is a codimension-two bifurcation@8#. It has been
theoretically studied for the case of a saddle fixed point w
only one positive eigenvalue@10,12# and significant differ-
ences have been appreciated between the case of purely
eigenvalues and a saddle focus@10,11#. BOITAL systems
may exhibit both kinds of saddle points but in this paper
consider cases with purely real eigenvalues only. In
saddle focus case the bifurcation structure is really dense
the experimental analysis becomes rather critical. Numer
simulations showing gluing phenomena associated wit
saddle limit cycle have been previously reported@21# and
corresponding first-return maps have been explained
means of a quite general Poincare´ map model@26#.

The homoclinic orbits defining the codimension-two po
are denoted byG0 and G1 , and it is assumed that indepen
dent control of both connections is provided by paramet
m0 andm1 , respectively, in such a way thatG0 (G1) occurs
for m050 (m150). It is also assumed that the correspon
ing periodic orbits, to be denoted by symbols 0 and 1, e
for m0,0 andm1,0, respectively. In the (m0 ,m1) param-
eter plane, the axes describe the principal homoclinic c
nections and the origin is the codimension-two point.
schematically indicated in Fig. 2, different regions can
distinguished in this parameter plane. Form0,0 and m1
,0, both the 0 and 1 periodic orbits exist and their resp
tive approach to the saddle point takes place as eitherm0 or
m1 tends to 0. One of the orbits vanishes in crossing
homoclinic line while the other remains alone. In the wh
region within the quadrant defined bym0.0 andm1.0 only
the 01 two-lobed periodic orbit exists. This relatively simp
orbit is the final result of the gluing process but the transit
taking place within the dark zones may be extremely co
plex. A large variety of homoclinic connections with diffe
ent looping geometries of saddle manifolds can occur wit
the transition zones@10,11#. Each homoclinic curve create
~destroys! a new periodic orbit possessing some 0-1 hyb
structure, i.e., a trajectory moving at both sides of the sad
stable manifold and describing a certain sequence of 0 a
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57 5369GLUING BIFURCATIONS IN OPTOTHERMAL . . .
loops in a given order. The existence domain of the perio
orbit is usually limited by another homoclinic curve. Th
various homoclinic connections define a variety of subzo
containing different periodic orbits. Superposition regio
where two different periodic orbits coexist may occur
some cases according to the ordering of homoclinic curv
If two contiguous subzones do not superpose then it me
that an intermediate subzone containing a different perio
orbit must exist in the middle and so on. Under some c
cumstances two homoclinic bifurcation curves can cross
another and then an additional global codimension-two p
exists, from which more homoclinic curves emerge.

Any hybrid orbit created during the gluing process
characterized by an ordered sequence of 0’s and 1’s. Dif
ent sequences may be associated with the same orbit ac
ing to the starting point but different orbits have differe
sequences. In the considered case of a saddle having
one positive eigenvalue, it may be shown that the orbit
quences cannot contain consecutive 1’s and 0’s simu
neously, that no more than two periodic orbits can coexis
the same parameter domain, and that the orbits of neigh
ing domains are related by symbolic rules based on the F
tree structure@10,12#. The multiple-loop homoclinic connec
tions will be denoted asG i j , where the first subindex indi
cates what kind of loop is outgoing from the saddle po
while the second subindex represents the rest of the o
sequence. The pair of homoclinic orbits limiting the doma
of a periodic orbit are always of opposite beginning, i.e.,G0i
andG1 j with both 0i and 1j describing the given orbit.

The actual structure of bifurcation curves around
codimension-two point depends on the form of the lineariz
vector field near the saddle point and the vector field geo
etry in the neighborhood of bothG0 andG1 homoclinic or-
bits @10,11,13#. We consider the case of a saddle with pure
real eigenvalues, of which only one is positive and o
among the rest is lower in modulus than the others. S
eigenvalues denoted asl1 and 2l2 describe the departur
from and the arrival at the saddle point, respectively. Un
these circumstances two kinds of situations must be dis
guished according to whether the principal homoclinic orb
reach the saddle point along the same side~butterfly configu-

FIG. 2. Basic scheme of a gluing bifurcation in a parame
plane. Gluing processes producing hybrid periodic orbits and c
plex behavior may occur in the shadowed areas.
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ration! or opposite sides~figure eight configuration! of the
strong stable manifold@10,11#. The two situations are sche
matically shown in Figs. 3~a! and 3~b!, respectively, for a
three-dimensional phase space. The basic gluing proces
BOITAL systems possess the figure-eight configuration
secondary codimension-two points arising from the cross
of other homoclinic connections may be equivalent to
butterfly configuration, as shown in Fig. 3~c!. On the other
hand, it is also relevant to consider the kind of twisting t
flow experiences along trajectories nearby the principal
moclinic orbits. Different structures of homoclinic bifurca
tions occur if the orientation is either preserved along b
orbits, or inverted along both orbits, or preserved in one o
but inverted in the other@10#.

In two-dimensional phase spaces, the saddle point
one-dimensional manifolds. Four different saddle conn
tions can occur and the corresponding curves cannot c
themselves except at the codimension-two point, where
invariant manifolds necessarily exhibit a figure-eight co
figuration. The order of the homoclinic bifurcations is ne
essarily like that shown in the diagram of Fig. 4~a! and it
implies the coexistence of the 01 two-lobed orbit with eith
the 0 or 1 orbits. Nevertheless, in strongly dissipative s
tems like the BOITAL ones, the high negative eigenval
with respect to the positive one is responsible for such
extreme narrowing of the coexistence regions, which ma
their observation difficult. As a matter of fact, we have i
vestigated gluing phenomena in BOITAL bilayer devic
without being able to detect any superposition of orbits in
transition from single- to two-lobed orbits both experime
tally @18# and numerically@22#. On the other hand, the re
sults shown in Fig. 1 illustrate a situation in which thre
successive gluing processes involving different saddle po
had occurred and a four-lobed periodic orbit has been cre
in a two-dimensional phase space.

In phase spaces of higher dimension both the sad
manifold configuration and the orientation properties of t
reinjection motion are significant in determining the bifurc
tion diagram. As a particular example that will be useful f
our analysis, we show in Fig. 4~b! the gluing bifurcation
diagram for the butterfly configuration and for the semio
entable case in which orientation is preserved nearG1 but

r
-

FIG. 3. Gluing configurations where the principal homoclin
orbits reach the saddle point along either the same side@~a! and~c!#
or the opposite sides~b! of the strong stable manifold.
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5370 57HERRERO, FARJAS, PONS, PI, AND ORRIOLS
inverted nearG0 @10#. In this case the gluing complexit
appears nearbyG1 only. There is an accumulation of period
domains with orbits of type 01n, wheren indicates the num-
ber of successive 1’s and it increases when approachin
G1 . The 01n periodic orbit appears associated with the p
of homoclinic bifurcationsG101n21 andG01n . The domains of
different periodic orbits appear superposed upon one
other, except for theG1 boundary where the accumulation
01n orbits takes place.

Up to now we have implicitly supposed a saddle point
negative value, i.e., the leading eigenvalues fulfilll12l2
,0. This is important because it means that each homoc
connection creates a single periodic orbit that is stable@27#.
In the contrary case, whenl12l2.0, a single periodic mo-
tion arises also from each homoclinic bifurcation but it is n
stable @27#. The gluing process observed in the thre
dimensional BOITAL system corresponds to a posit
saddle and, for this reason, the stable periodic orbits dete
in both numerical simulations and experiments must beco
unstable before reaching homoclinicity. This implies mo
complex bifurcation diagrams with additional bifurcatio
curves that arise from the proper codimension-two points
the homoclinic bifurcation curves. Typically, cyclic saddl
node bifurcations appear in the case of an orientati
preserving homoclinic connection while period-doubling
furcations accompanied by homoclinic bifurcations of t
period-doubled orbits will occur when the orientation is i
verted@7#. Except for the case of Lorenz-like equations@29#,

FIG. 4. Gluing bifurcation diagrams for the two-dimension
case~a! and for a three-dimensional saddle point withl12l2,0
and homoclinic orbits in the butterfly configuration with orientati
preserved nearG1 but inverted nearG0(b). Broken line arcs denote
periodic orbit domains.
to
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the theoretical analysis of gluing bifurcations reported in
literature consider the negative saddle case only@8–13#.

IV. GLUING BIFURCATION OBSERVED IN THE BOITAL
SYSTEM

This section describes a numerical bifurcation diagr
obtained for a BOITAL trilayer system@28#. It corresponds
qualitatively to the experimentally analyzed gluing proce
Some numerical simulations are also presented in the
section for comparison with the experimental results.

Figure 5 presents the main features of the bifurcation d
gram in the parameter plane defined by the normalized i
dent power,cE , and the thickness of one of the spacin
layers,g3 . In the considered range ofcE values, the station-
ary solution of the system is constituted by five fixed poin
N2 , S2 , N3 , S3 , andN4 . The diagram of Fig. 5 concern
limit cycles originated fromN2 andN3 when they approach
S2 in the configuration schematically indicated in Fig. 6. T
two basic cycles will be denoted by 0 and 1, respective
and the corresponding homoclinic orbits toS2 by G0 andG1 .
Both homoclinic connections occur simultaneously in t
codimension-two point denoted bya in Fig. 5 and the
scheme of Fig. 6 corresponds to the right-hand side ofa. At
the a point, S2 has eigenvalues equal to231.9, 1.1, and
20.2 and manifolds in the figure-eight configuration@Fig.
3~b!#. The homoclinic bifurcationsG10 andG01 appear from
a and no more homoclinic curves have been found aro
this point. G10 moves nearG0 up to cross from one to the
other in a second codimension-two point that is denoted bb
and from which a bundle of bifurcation curves emerges.
this point the saddleS2 has eigenvalues equal to226.4, 1.0,
and 20.1 and its manifolds connect as shown in Fig. 3~c!.
Similarly, G01 moves nearG1 and another codimension-tw
point denoted byb8 occurs in the crossing of both curve
The eigenvalues of the stable orbits and the analysis of fl
sections in a proper Poincare´ plane indicate that the orienta
tion is preserved near the four homoclinic connections eve

FIG. 5. Numerical bifurcation diagram for a BOITAL trilaye
system, represented in the parameter plane defined by the thick
of the third layer and the input light intensity.
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57 5371GLUING BIFURCATIONS IN OPTOTHERMAL . . .
where in the diagram except for theG0 andG1 curves at the
right-hand side of theb and b8 points, respectively. This
indicates that the principal homoclinic orbits experien
twistedness change in such codimension-two points.

FIG. 6. Schematic bifurcation diagram as a function of the in
power for ag3 value at the right-hand side of thea codimension-
two point. The order of theG0 and G10 ~G1 and G01! homoclinic
bifurcations determines at what side of theb (b8) point the system
is.
We focus our analysis on theb codimension-two point
and describe details of the gluing bifurcation structure fou
in the surroundings of theG0 andG10 lines only. The basic
orbits of the gluing process are now the orbits 0 and
where we have preferred the symbol 10 instead of
equivalent 01 in order to emphasize the opposite flow em
gence from the saddle point of the two basic orbits. The m
glued orbit is therefore described as 0~10!. Let us also re-
mark that in this case we are dealing with a pair of h
moclinic bifurcations of a positive saddle point that involv
nontwisted orbits organized in the butterfly configurati
equivalent to that in Fig. 3~c! and that, after meeting togethe
at theb point, one of the orbits~the 0! becomes twisted.

The one-parameter diagrams of Fig. 7 correspond to v
tical sweepings across the homoclinic lines for three val
of g3 , one located in between thea and b points and the
other two at the right-hand side ofb. In the diagrams we
have represented the time intervals between successive
sages of the orbit for a certain Poincare´ plane that cuts the 0
loops only. In this way the Poincare´ intersections detect both
the 0 and 10 loops one time per loop only, and the 10 lo
are easily distinguished from the 0 ones by their longer
turn times. The orbit analysis for a givencE value has been
done after disregarding a long enough time evolution tr

t

to
ne in
FIG. 7. Bifurcation diagrams as a function ofcE for g352.62 ~a!, 3 ~b!, and 8~c!. The orbits are characterized by their return times
a Poincare´ plane cutting the 0 loops only. The diagrams describe stable orbits except for the 0 saddle orbit shown by the broken li~b!
to indicate the occurrence of theG0 homoclinic connection.
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sient so that attracting orbits are solely considered. Sign
cant stable and unstable periodic orbits have been follo
by continuation techniques and characterized in detail.
windows with a discrete number of branches denote sta
periodic orbits and the structure of such orbits in 0 and
loops is given by the number of short and long return tim
respectively. When both kinds of loops appear more than
time the sequential order can be only determined by insp
tion of the time evolution. Asymptotic return time rises
certain loops indicate a close approach of such loops to
saddle point and the consequent vanishing of the perio
orbit suggests the occurrence of a homoclinic bifurcati
Notice that the asymptotic rises correspond to 0 loops at
right-hand side of the windows and to 10 loops at the ot
side. Windows with a continuous spread of points descr
aperiodic evolutions and usually contain smaller perio
windows. Nonperiodic windows appear through a perio
doubling sequence beginning from the previous periodic
bit and vanishes with intermittencies towards the next p
odic orbit. Aperiodic evolutions are typically observed
hesitations among neighboring periodic orbits. The way
period-doubling bifurcations appear in the return time d
grams indicates that the two loops of the doubled orbit
hibit oppositely varying return time. Such a behavior is e
plained by noting that the doubling orbit is in the way
homoclinicity and by assuming that the two loops move o
positely with respect to the saddle point.

Consider first the diagram of Fig. 7~a! corresponding to
the left-hand side ofb. Only the two basic orbits 0 and 1
have been detected in this case and they appear superp
in a certaincE domain. Figure 8 shows the coexisting orb
in the (c1 ,c2 ,c3) phase space and points out how the t
jectories approach the saddle in the butterfly-equivalent c
figuration. The two orbits vanish with an asymptotic increa
of their periods in what seems the two principal homoclini
ties, G0 and G10. The process is, however, more compl
because each one of the orbits possess an eigenvalue
tends to11 while its period increases, instead of 0 as in
regular homoclinic connection. The situation may be int
preted according to the scheme of the resonant s
switching codimension-two bifurcation for a nontwisted h
moclinic orbit @30#. We suppose that the homoclin
bifurcation takes place by creating a saddle orbit while

FIG. 8. Coexisting orbits forcE533.685 in the case of Fig. 7~a!
showing that both approach the saddle point tangent to each o
The cross denotes the saddle.
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stable orbit is even growing in period and both orbits m
then together by vanishing in a saddle-node bifurcation. N
ertheless, our continuation techniques have not been ab
catch any saddle orbit and therefore we cannot confirm
bifurcation details.

Figure 7~b! corresponds to the right-hand side ofb and
contains a rich variety of gluing phenomena. The princip
homoclinic connections,G0 andG10, appear now in opposite
order as in Fig. 7~a! and, therefore, there is no coexistence
0 and 10 orbits but two new kinds of structures have
peared. One is equivalent to the gluing structure of Fig. 4~b!
for the semiorientable case of a negative saddle point,
the sequence of homoclinic bifurcations ordered asG (10)0,
G0 , G (10)0(10), G0(10) ,...,G (10) and the succession of per
odic windows of type 0(10)n accumulating towardsG10.
The second kind of structure appears at the right-hand sid
each periodic window in a region opened with a perio
doubling bifurcation of the given orbit and ended just at t
beginning of the next periodic orbit. For the 0(10)n win-
dows, such a region appears as a narrow aperiodic win
resulting from the period-doubling sequence. A wider stru
ture appears in the case of the basic orbit 0, in which
02(10) periodic window may be seen in the middle of tw
aperiodic windows both appearing through period-doubl
sequences. The eigenvalue analysis points out that e
stable periodic orbit suffers a reversion of twistedness ac
its existence domain. At the left-hand side, the orbits van
with one eigenvalue tending to11 and with asymptotically
increasing period. As already discussed, it may be in
preted as a combination of aG (10)j nontwisted homoclinic
bifurcation creating a saddle orbit and a saddle-node bi
cation vanishing the two periodic orbits@34#. On the con-

er.

FIG. 9. Gluing bifurcation diagram corresponding to theb
point. Each homoclinic bifurcation creates a saddle periodic or
Nontwisted homoclinic bifurcations appear in association with
saddle-node~SN! bifurcation. Twisted homoclinic bifurcations ar
preceded by a period-doubling~PD! sequence.
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FIG. 10. Period-doubling sequence at the beginning of the gluing process. Experimental time evolutions of the reflected po
corresponding return time maps for two incident powers,~a!. Numerical results showing successive phase portraits of the sequence, th
evolution of the basic 0 orbit, and return maps for the aperiodic state,~b!.
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trary, at the right-hand side of the windows, the orbits ha
an eigenvalue equal to21 and are therefore fully twisted. A
period-doubling bifurcation takes place and the remain
saddle orbit continues the asymptotic time increase towa
what seems aG0 j twisted homoclinic connection. Somethin
similar happens with the successive period-doubled or
but it cannot be appreciated in the bifurcation diagram
where only the 0 saddle orbit has been represented. S
behavior is clearly related with the positive value of th
saddle point and the consequent fact that its homoclinic c
nections cannot produce stable orbits. In summary, we c
clude that the main bifurcation structure around theb point
is as schematically shown in Fig. 9. All of the bifurcatio
curves emerge fromb except for the principal homoclinic
bifurcations and the saddle-node bifurcation associated w
G10. The domain of a given stable periodic orbit is denot
by a solid line arc that becomes broken at the perio
doubling bifurcation. Period-doubling sequences yieldi
aperiodic evolutions occur in the regions between the peri
doubling bifurcation and the saddle-node bifurcation of t
next periodic window. The additional substructure existi
in the case of the 0 periodic orbit will be seen in more det
in the diagram of Fig. 7~c!.

Notice that the whole structure of Fig. 7~b! covers a rela-
tive cE interval lower than 1%. The experimental resolutio
does not permit one to distinguish details of such a struct
except perhaps for the intermediate periodic window. It h
been necessary to go farther fromb in a situation that
roughly corresponds to the diagram of Fig. 7~c!. The system
exhibits in this case periodic orbits of both 0(10)n and
0n(10) types, even if organized in a different way. The a
pearance of 0n(10) orbits, withn52,3,4, can be attributed to
e
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gluing processes between orbits of type 0n and the basic
orbit 10. As will be shown in the light of the one
dimensional map describing the gluing process, the pres
of 0n with odd n numbers may be explained as due to
period-adding sequence of saddle-node bifurcations gen
ing superstable orbits 0n with n>3. On the other hand, a
relatively large packet containing orbits of typ
@02(10)#n@0(10)# appears in between the 02(10) and 0~10!
windows. Similarly, a group of@0(10)#n@0(10)2# orbits ap-
pears at the other side of the 0~10! window. Such a complex
structure can be explained if additional crossings of
moclinic bifurcations have occurred. Such a kind of hyb
orbits has not been observed in the experiment and not
be considered in more detail.

V. EXPERIMENTAL RESULTS AND NUMERICAL
SIMULATIONS

Figures 10–15 present a series of experimental and
merical results illustrating a variety of states observed du
a gluing process of the BOITAL system for successiv
increasing incident powers. The experimental results w
obtained with a$glass-silicone-glass% device of thicknesses
140 mm, 70mm, and 1 mm, respectively, and the numeric
simulations correspond to the one-parameter bifurcation
gram of Fig. 7~c!. Poincare´ sections of the attractors obtaine
both experimentally and numerically appear to be almost
dimensional. It denotes strong contraction due to dissipa
and suggests that the main features of the dynamics m
probably be well described by means of one-dimensio
maps. Time evolutions appear in the figures usually acc
panied by time first-return maps and, in some numer
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cases, also by return maps derived from phase-space P
carésections. Time maps are easily obtained from time e
lutions and are particularly convenient for the experimen
analysis. Time maps provide complementary informat
concerning time divergences but their interpretation is
immediate because each point is associated with the re

FIG. 11. Experimental (PE5122.6 mW) and numerical (cE

517.35) results illustrating an aperiodic orbit of type 0n(10).

FIG. 12. Experimental results showing an aperiodic orbit of ty
0n(10) with n varying from 1 to 2, forPE5128 mW, and the
periodic orbit 0~10! for 130 mW.
in-
-
l

n
t
rn

times of two successive loops. Phase space return maps
vide a more direct interpretation of the attractor structure a
will be useful for comparing with one-dimensional maps d
veloped from the gluing bifurcation theory@31,32,13#. In all
of the cases the Poincare´ sections have been chosen to c
the 0 orbits of the attractors only.

Figure 10 illustrates the period-doubling sequence gen
ated from the basic orbit 0 just before the beginning of
gluing process. The experimental evolutions correspond
the periodic orbit near the first doubling and the aperio
state containing 0 loops only resulting from the sequen
respectively. The subharmonic process is clearly seen in
numerical phase portraits. The numerical time evolut
shown in the figure represents the normalized reflec
power cR as a function of a dimensionless time. Such
evolution corresponds to the periodic orbit and looks rea
similar to the experimental one. The experimental retu
maps point clearly out the periodic and aperiodic behavio
the corresponding time signals. Notice that in one case
time scale of the return map is ten times longer than in
other. The agreement between the experimental and num
cal return time maps is remarkable. The single hump and
shapes of both the time and phase space return maps
typical for chaotic signals arising from subharmonic ca

e

FIG. 13. Experimental (PE5132.4 mW) and numerical (cE

518.67) results illustrating an aperiodic orbit of type 0(10)n with n
varying from 1 to 2.

FIG. 14. Return time map corresponding to a 0(10)n aperiodic
orbit with n varying from 4 to 9 obtained forPE5138.4 mW.
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cades. The stable manifold of the saddle point respons
for the gluing process lies higher than the hump of the ph
space map and the iteration remains always in the 0 bra
Nevertheless, such a kind of map is able to produce su
stable periodic orbits of type 0n, with n>3 through saddle-
node bifurcations occurring when the trajectory passes
the critical point at the top of the hump@33#. These orbits
experience also period-doubling sequences and, most im
tantly, will be involved in gluing processes with the 10 orb
when the stable manifold will touch the map hump. In th
way 0n(10) orbits will appear.

Figure 11 corresponds to a higher input power and sh
an aperiodic hybrid orbit of the type 0n(10) with n varying
from 3 to 6 ~from 4 to 7 in the numerical simulation!. The
interferometric phasec(t) derived from the experimenta
signal PR(t) has been included here to point out the or
structure more directly and to facilitate the comparison w
the numerical results reported in the same figure. The t
evolution points clearly out the presence of a saddle poin
correspondence with the intermediate level of the sign
where the system remains a variable time interval accord
to how close to the stable manifold the evolution passes.
double way of departure from the intermediate level and
return to it after both kinds of departure indicate that t
saddle is relatively near homoclinicity at both of its side
Notice again the good agreement between the experime
and numerical return time maps. The well defined struct
of these maps evidences the deterministic evolution of
system. The additional small branch in the lower part of b
the phase space and return time maps and the return
double peak are clearly associated with the occurrence o
loops. The phase space map clearly points to the stable m
fold of the saddle point as the vertical line to which the tw
branches approach tangentially. Unlike in Fig. 10, the sta
manifold now cuts the top of the hump so that the trajecto
passing over that manifold describe a 10 loop followed ag
by a sequence of 0 loops. The successive 0 loops are o
tation preserving but the last one may be either nontwiste
twisted according to at what side of the critical point t
iteration takes place. This means two different ways to
proach the stable manifold and it is the origin of the dou
peak in the return time divergence. By following the retu
time map notice that the intersection with the diagonal
scribes the periodic orbit 0 and therefore the approach toG0

FIG. 15. Basic periodic orbit of type 10 appearing at the end
the gluing process.
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will manifest in the displacement of this intersection po
towards infinite return times. At the same time one of t
time divergence peaks will approach the diagonal to me
with it at theG0 homoclinicity and then the map branch wi
cross at the other side of the diagonal. At the same time
small lower branch will enlarge and also approach the di
onal. At a certain moment the hybrid orbit 0~10! will be
created in a saddle-node bifurcation. This process is ill
trated in Figs. 12 and 13. Figure 12 presents results co
sponding to a 0n(10) orbit, withn varying between 1 and 2
and to the periodic orbit 0~10!. Notice that this periodic orbit
does not necessarily lie on the diagonal since the return ti
of the 0 and 10 loops may be different. The return maps
Fig. 13 indicate thatG0 has already happened. In the pha
space map,G0 takes place when the periodic orbit 0 conne
with the stable manifold, i.e., when the ending point of the
branch arrives just at the diagonal.

A qualitatively different feature has also happened in
case of Fig. 13. The 10 branch of the phase space map
surpassed the horizontal level of the stable manifold and t
trajectories passing over such a level iterate again on
same branch. In this way 10 successive loops may occur
the case in the 0(10)n aperiodic orbit of Fig. 13. Two diver-
gent peaks appear again on the return time map. The pe
the left-hand side describes passages nearby the stable m
fold after having done a 0 loop while the other peak corre
sponds to 10 loops. The process appears more pronounc
the recording for 138.4 mW~Fig. 14!, which shows a 0(10)n

orbit with n varying from 4 to 9. In this case the return tim
divergence associated with the 0 loops has almost vanis
Finally, the signal for 139.2 mW in Fig. 15 shows how th
system exhibits the 10 periodic orbit at the other side of
gluing process.

The theoretical analysis of the codimension-two glui
bifurcations @31,32,13# are based on a Poincare´ map that,
under the assumption of a stable foliation of the return pla
can be reduced to a one-dimensional map@32#. It is not clear
to what extent this condition is fulfilled in the BOITAL sys
tems. The twofold structure clearly marked in the experim
tal return maps indicates that the physical devices exhibi
more complex behavior. Nevertheless the numerical ret
maps do not show such a twofold structure and, on the o
hand, the Poincare´ sections of the numerical attractors appe
always as very thin curves without any sort of transve
structure. We then find it reasonable to assume that the
namics of the BOITAL model is essentially associated w
the longitudinal coordinate along the Poincare´ section and
that the numerical phase space return map shown in Fig
provides a global overview of the one-dimensional map
derlying the gluing dynamics. It is a two-branched map d
scribing the two basic loops to be glued and with bo
branches ending on a common vertical line associated w
the two-dimensional stable manifold of the saddle point
sponsible for the gluing process. TheG0 andG10 homoclinic
connections will happen when the ending point of the resp
tive branch reaches the diagonal. The relative position of
ending points determines at what side of the codimens
two bifurcation the system is found and, in particular, th
coincidence denotes the degenerate point. It may be app
ated that in the case of Fig. 13 theG0 homoclinicity has just
occurred because the 0 branch appears to be just dis

f
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5376 57HERRERO, FARJAS, PONS, PI, AND ORRIOLS
nected from the diagonal, while theG10 homoclinicity is re-
ally far. Notice also that both branches touch tangentially
vertical line so that both homoclinic connections will create
nonstable periodic orbit. This fact is related with the posit
value of the saddle point. The negative~positive! slope of the
0 branch~10 branch! nearby the vertical line indicates tha
this part of the map inverts~preserves! the orientation of
intervals, i.e., the G0 j (G (10)j ) homoclinicities involve
twisted ~nontwisted! connections. On the other hand, th
bending of the 0 branch to acquire a positive slope perm
the occurrence of stable orbits. The same happens to th
branch even if in this case no changes of slope sign
appreciated in the map of Fig. 13. The 10 branch will cro
the diagonal before theG10 connection and a saddle-nod
pair of 10 periodic orbits will be then created. The sad
orbit will become theG10 homoclinic orbit while the stable
orbit will be the detected state~139.2 mW signal in Fig. 15!.

We consider the theoretical one-dimensional Poinc´
map @32# writen as follows:

xj 115a0~m!2b0~m!uxj uj2c0~m!uxj u2j1~h.o.t.!, xj,0

xj 1152a10~m!1b10~m!xj
j2c10~m!xj

2j1~h.o.t.!, xj.0,
~2!

where the local coordinatex is measured on the unstab
manifold, m describes the set of parameters governing
principal homoclinic bifurcations, ‘‘h.o.t.’’ stands for ‘‘high
order terms,’’ andj52(2l2 /l1) is the saddle index
which in our case isj,1. This means that the derivatives
the map atx50 are infinite and that both homoclinic loop
cannot be therefore attractive.a0 and a10 characterize the
separation between each one of the two branches of the
stable manifold and the stable manifold on the Poinc´
plane, i.e., these parameters provide independent contr
the two principal homoclinic connections.b0 andb10 are the
so-called separatrix quantities determining the orienta
properties of the two branches of the map@31#. For the situ-
ation considered in this section, corresponding to the rig
hand side of theb codimension-two point, it isb0,0 and
b10.0 but at the other side ofb must beb0.0 in order to
describe the twistedness reversion experienced byG0 . The
second-order terms in Eq.~2! are responsible for the folding
of the branches with increasinguxu values necessary for pe
mitting stable periodic orbits. Figure 16 shows a represe
tion of the map~2! for a given set of parameters and a bifu
cation diagram obtained by varyinga0 anda10 in such a way
that both branches of the map displace simultaneously
maintaining a given separation. Similar diagrams with
same structure of main periodic windows are obtained fo
relatively wide range of the map parameters. Notice also
similarities with the numerical diagram of Fig. 3~b! obtained
from the BOITAL model. Nevertheless, a more care
choice of the map parameters would be required in orde
reproduce the fine details appearing within the aperio
windows. The actual shape of the map branches determ
the occurrence of secondary codimension-two points in
crossing ofG0 j and G (10)i homoclinic bifurcations and the
consequent emergence of additional bifurcations@32,13#.

In conclusion, complex dynamical phenomena associa
with a codimension-two homoclinic bifurcation of the gluin
e
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type have been observed in the response of an optothe
bistable device irradiated by a laser beam. A detailed an
sis of a gluing transition process as a function of the in
power has evidenced a variety of hybrid orbits based
combinations of the two basic periodic orbits. Return tim
first-return maps derived from the time evolutions have be
used to understand details of the process. The clear and
defined structure of such maps confirms the occurrence
deterministic chaos in cases of aperiodic evolutions. Co
parison with numerical simulations has shown a really go
agreement, particularly remarkable for the return maps.
experimental analysis has been done relatively far from
codimension-two point in order to be able to observe
gluing structure in certain detail. Nevertheless, the occ
rence of additional codimension-two bifurcations affecti
secondary homoclinic bifurcations makes the bifurcation d
gram more complex. Finally, the return maps observed b
experimentally and numerically have been connected w
the one-dimensional map established in the theories of
codimension-two gluing bifurcation.
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FIG. 16. Bifurcation diagram of the map~2! as a function ofa0

and for a105a010.7, b0522.3, b1051.1, c052, c1050.3, andj
50.2. The inset shows the representation of the map fora0

520.2.
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